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Abstract— The IKEA Furniture Assembly Environment is one
of the first benchmarks for testing and accelerating the au-
tomation of long-horizon and hierarchical manipulation tasks.
The environment is designed to advance reinforcement learning
and imitation learning from simple toy tasks to complex tasks
requiring both long-term planning and sophisticated low-level
control. Our environment features 60 furniture models, 6
robots, photorealistic rendering, and domain randomization.
We evaluate reinforcement learning and imitation learning
methods on the proposed environment. Our experiments show
furniture assembly is a challenging task due to its long horizon
and sophisticated manipulation requirements, which provides
ample opportunities for future research. The environment is
publicly available at https://clvrai.com/furniture.

I. INTRODUCTION

The ability to perform complex manipulation of physi-
cal objects is necessary to use tools, build structures, and
ultimately interact with the world in a meaningful way.
Simulated benchmarks [1]–[5] have played a key role in
the recent advances in reinforcement learning (RL) and
imitation learning (IL) for robotic manipulation. However,
these benchmarks are limited to simple, short-horizon tasks,
such as picking, pushing, and peg inserting. This lack of
a “standardized” simulated environment for long-term tasks
is the main bottleneck of advancing RL and IL techniques
toward solving long-horizon tasks. To this end, we intro-
duce the IKEA Furniture Assembly Environment as a new
benchmark for complex long-horizon robot manipulation. We
believe our environment can play a key role in advancing RL
and IL methods on long-horizon robotics tasks.

Even for humans, furniture assembly is not simple. Imag-
ine that you are building IKEA furniture. First of all, it is
not trivial to figure out how to assemble pieces into the final
configuration. Specifically, it is not apparent from pieces on
the floor which parts to choose for attachment and in what
order. Hence, we need to dissect the final configuration and
deduce the sequence of tasks necessary to build the furniture.
Moreover, connecting two parts requires complicated manip-
ulation skills, such as accurate alignment of two attaching
points and sophisticated force control to firmly attach them.
Therefore, furniture assembly is a comprehensive robotics
task [6]–[8] requiring reliable 3D perception, high-level
planning, and sophisticated control, making it a suitable
benchmark for robot learning algorithms.
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Fig. 1: The IKEA Furniture Assembly Environment is a
furniture assembly simulator with 60 furniture models, 6
robots, and customizable background, lighting, and textures.

The IKEA Furniture Assembly Environment is a visually
realistic environment that simulates the task of furniture
assembly as a step toward autonomous long-horizon ma-
nipulation. The environment simulates 60 furniture models
and supports various agents including Sawyer, Baxter, Jaco,
Panda, and Fetch robots. To provide further diversity, the
environment supports randomization in physics, lighting,
textures, and more factors of variations. Lighting conditions,
textures, and backgrounds can be customized or randomized
using Unity [9] as illustrated in Fig. 1.

A variety of research problems could be investigated
with this new environment that broadly span perception,
planning, and control. For perception, the environment could
be used to solve 3D object detection, pose estimation,
instance segmentation, scene graph generation, and shape
estimation problems. For robotic planning and control, the
environment provides dense reward functions and automated
demonstration generation, making it suitable for testing RL
and IL on long-horizon complex manipulation tasks. Further,
diverse shapes of furniture pieces can be used to learn and
evaluate generalizable and transferable skills.

In this work, our aim is to provide a testbed and bench-
mark for complex long-horizon robotic manipulation tasks
that allows researchers to study reinforcement learning and
imitation learning. For benchmarking RL and IL algorithms,
we provide a shaped dense reward and demonstrations for
8 selected furniture models. Our empirical evaluation of RL
and IL methods on the 8 benchmark furniture models shows
that, despite recent progress in RL and IL, current methods
are not able to solve complex robotic manipulation tasks,
providing ample opportunities for future research.

II. RELATED WORK

Deep reinforcement learning (RL) has made rapid progress
with the advent of standardized, simulated environments.
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Most progress has been made in game environments, such
as Atari [10], VizDoom [11], and StarCraft2 [12]. Recently,
many simulated environments have been introduced in di-
verse applications, such as autonomous driving [13], [14],
indoor navigation [15]–[18], continuous control [1], [4], [5],
[19], and recommendation systems [20].

In robotic manipulation, most existing environments have
been focused on short-term manipulation tasks, such as
picking and placing [1], [21], in-hand dexterous manipula-
tion [22], [23], door opening [24], and peg insertion [25],
[26]. Recent advancements in simulators, such as Robo-
suite [4], RLBench [2], PyRoboLearn [27], and Meta-
World [3], take a step towards a comprehensive manipula-
tion simulator by offering a variety of manipulation tasks.
However, these tasks, which consist of lifting, stacking, and
picking and placing, are still limited to primitive skills.

Composite manipulation tasks, e.g., block stacking [28],
ball serving [19], and kitchen tasks [29], [30], have been
proposed but limited to little variation in shapes and physical
properties of objects. In contrast, we simulate a complex
manipulation task, furniture assembly to evaluate long-term
planning and generalizable skills for various shapes and
materials of objects. While robotic furniture assembly has
been studied in instrumented and constrained settings [6]–
[8], our simulated environment increases accessibility of the
furniture assembly task to the community.

Moreover, recent progress in vision-based RL meth-
ods [31]–[33] shows comparable sample efficiency to state-
based RL. To test the scalability of such vision-based RL
approaches to real-world scenarios, our environment can
serve as a visually realistic benchmark, which provides pho-
torealistic rendering with diverse and configurable textures,
backgrounds, and lighting.

III. IKEA FURNITURE ASSEMBLY ENVIRONMENT

To advance reinforcement learning and imitation learning
from simple, videogame-esque tasks to complex and realistic
tasks, the IKEA furniture assembly environment features
long-horizon and hierarchical tasks, realistic rendering, and
domain randomization. The furniture assembly can be ac-
complished by repeating (1) selecting two compatible parts,
(2) grasping these part(s), (3) aligning the attachable connec-
tors, and (4) firmly attaching them, as illustrated in Fig. 2,
until all parts are assembled. Thus, furniture assembly has
long horizon (200-1500 steps) compared to prior manipula-
tion benchmarks, e.g., 280 for Franka Kitchen [29].

(a) Selecting (b) Grasping (c) Aligning (d) Attaching

Fig. 2: Our environment simulates robotic furniture assem-
bly: a robot (a) decides which parts to assemble, (b) grasps
the desired parts, and (c) aligns and (d) attaches the grasped
parts. This procedure is repeated until all parts are assembled.

Fig. 3: Diverse furniture models included in our environment.
Each furniture is modeled following the IKEA’s user’s man-
ual. Different parts are colored differently for visualization.

A. Environment Development

As a challenging robotic manipulation testbed including
long-horizon tasks and 3D alignment of various shapes of
objects, we propose a novel 3D environment that supports
assembling IKEA furniture. For fast and accurate physics
simulation, we use MuJoCo [34] as the underlying physics
engine. Specifically, our environment is built on top of
Robosuite [4], which features modularized API design and
diverse robot controllers. We use the Unity game engine [9]
and the MuJoCo-Unity interface from DoorGym [24] for
realistic and configurable 3D rendering. Our environment
follows the OpenAI Gym interface [1] for easy integration
with existing RL and IL libraries.

B. Furniture Models

Our environment provides simulation of furniture assem-
bly of 60 different furniture models as shown in Fig. 3.
Each furniture is modeled following IKEA’s official user’s
manuals. Due to the limitation of physics simulation and dif-
ficulty in modeling, some complex structures are simplified
and small details, such as carving and screws, are omitted.

Although screwing is an important aspect of many robotic
assembly tasks, conducting realistic screwing with available
grippers is infeasible without developing end-effectors or
robot arms dedicated to screwing. Moreover, accurate phys-
ical simulation of screws is not supported by the MuJoCo
physics engine, and most physics engines in general. Cur-
rently, the environment contains an abstracted screwing phase
where the robot must select the connect action to attach the
parts. We plan to replace the abstracted connect action with
a realistic screwing action as future work.

Parts: Based on IKEA’s official user’s manuals, the furni-
ture models are created using the 3D modeling tool, Rhino,
and each furniture part is converted to a separate 3D mesh file
in a format of STL, which is used for both physics simulation
in MuJoCo and rendering in Unity. For the robots with
fixed bases (i.e., limited reach), our environment supports
downscaling of furniture models to fit in the workspace.

Connectors: Physics simulators show limited accuracy for
sophisticated screwing and peg inserting interactions between
attaching points of furniture parts. Therefore, we abstract



(a) Sawyer (b) Baxter (c) Jaco

(d) Panda (e) Fetch (f) Cursor

Fig. 4: The Sawyer, Baxter, Jaco, Panda, and Fetch mobile
manipulator robots are supported. Various action spaces are
provided including end-effector space, joint velocity, and
joint torque controls.

connection information and attachment points between two
furniture parts, such as screws and holes, with connectors.
Connectors are located on the furniture parts and serve
as areas of attachment by representing the correspondence
between attaching points and relative 3D pose.

Specifically, we represent connectors with their ID, posi-
tion, and orientation to the part. The IDs are used to verify
compatibility between two connectors. For example, a pair
of connectors on part A and part B have IDs A-B and B-A,
respectively. Identical parts can be used interchangeably
since they share the same connector IDs. For furniture pieces
with symmetric shapes, acceptable attachment angles are
also specified in connectors (e.g., {0°, 90°, 180°, 270°} for
rectangular table legs and [0°, 360°] for bars). All furniture
parts and connectors are manually annotated.

C. Furniture Assembly Simulation

In our environment, robotic arms can move around the
environment and interact with furniture parts. While as-
sembling two furniture parts requires screwing in the real
world, we abstract it with a connect action. Therefore, in
addition to actions for robot control (e.g., joint torque or
3D end-effector pose), the action space has one additional
action dimension, connect, which attaches two attachable
furniture parts (i.e., two corresponding connectors are com-
patible and aligned). Specifically, we examine the Euclidean
distance between the connectors dL2(xA,xB), the cosine
similarities between the connector up vectors scos(uA,uB),
forward vectors scos(fA, fB), and projections of up vectors
to a segment between two connectors scos(uA,xB − xA)
and scos(uB ,xA − xB), where x, u, and f denote a 3D
coordinate, up vector, and forward vector of a connector,
respectively. By default, two connectors are attachable when
they are within 2 cm and the cosine similarities are larger
than 0.99.

(a) RGB (b) Seg. map (c) Depth (d) Goal

Fig. 5: An RGB image, pixel-wise part segmentation map,
depth map, and goal image are available from cameras.

D. Agents

Our environment supports a variety of robots for interact-
ing with furniture: Rethink Sawyer, Rethink Baxter, Kinova
Jaco, Franka Emika Panda, Fetch mobile manipulator, and
Cursor (abstract agent), as illustrated in Fig. 4.

Observation space: The observation space is fully con-
figurable to fit a variety of problem settings. It can consist
of agent state (e.g., joint positions, velocities, and con-
tact forces), environmental state (e.g., 3D coordinates and
orientations of furniture parts), and camera observations.
Aside from third-person view RGB images, the environment
also supports object segmentation masks (pixel-wise dense
annotation) and depth camera observations as shown in
Fig. 5. More cameras can be added to collect images from
diverse views, such as egocentric view and wrist view.

Action space: The action space consists of arm movement,
gripper control, and connect action but varies by control
modes: 6D end-effector space control with inverse kinemat-
ics, joint velocity control, and joint torque control. The Fetch
mobile manipulator has two additional actions for moving
and turning its base.

For RL and IL benchmark, we use the Rethink Sawyer
robot with joint velocity control as an agent. The observation
consists of the robot state (joint angles and velocities), end-
effector state (end-effector position, rotation, and velocity),
and object state (3D coordinates and orientations of all parts).

E. Reward Function

For all furniture models, our environment provides a
sparse reward for every successful pick, attachment, and
full assembly. However, learning from such a sparse reward
signal is not practical with existing RL methods. To ease
the challenge of learning from a sparse reward, we provide
a well-shaped dense reward function for 8 furniture models
based on manually annotated way-points.

The dense reward function is a multi-phase reward defined
with respect to a pair of furniture parts to attach (e.g., a
table leg and a table top) and the corresponding manually
annotated way-points, such as a target gripping point g for
each part. The reward function for a pair of furniture parts
consists of eight different phases as follows:

1) Initial phase: The robot has to reconfigure its arm pose
to an appropriate pose pinit for grasping a new furni-
ture part. The reward is proportional to the negative
distance between the end-effector peff and pinit.

2) Reach phase: The robot reaches above a target fur-
niture part. The reward is proportional to the negative



distance between the end-effector peff and a point preach
5 cm above the gripping point g.

3) Lower phase: The gripper is lowered onto the target
part. The phase reward is proportional to the negative
distance between peff and the target gripping points g.

4) Grasp phase: The robot learns to grasp the target part.
The reward is given if the gripper contacts the part, and
is proportional to the force exerted by the grippers.

5) Lift phase: The robot lifts the gripped part up to plift.
The reward is proportional to the negative distance
between the gripped part ppart and the target point plift.

6) Align phase: The robot roughly rotates the gripped
part before moving it. The reward is proportional to
the consine similarity between up vectors uA,uB and
forward vectors fA, fB of the two connectors.

7) Move phase: The robot moves and aligns the gripped
part to another part. The reward is proportional to the
negative distance between the connector of the gripped
part and a point pmove to 5 cm above the connector of
another part, and the cosine similarity between two
connector up vectors, uA and uB and forward vectors
fA and fB . Note that all connectors are labeled with
aligned up vectors and forward vectors.

8) Fine-grained move phase: The robot must finely align
two connectors until attached. The same reward is used
as the move phase with a higher coefficient, making the
reward more sensitive to small changes. In addition, we
provide reward based on the activation of the connect
action a[connect] when the parts are attachable.

Upon every phase completion, a completion reward is
given to encourage the agent to move onto the next phase.
In addition to the phase-based reward, a control penalty
‖a‖2, stable wrist pose reward scos(uwrist, (0, 0,−1)) and
scos(fwrist,g1 − g2), and gripping reward (i.e., open the
gripper only in initial, reach, and lower phases) are provided
throughout the episode. If the robot releases the gripped
object, the episode terminates early with a negative reward.

The phase completion is determined based on whether the
robot and part configurations satisfy a distance and angle
constraint with respect to a target configuration. When all
phases are completed, the phase is reset to initial phase.
This process is repeated until all parts are attached.

Our dense reward function is verified for full assembly on
a simple three-block assembly task. Note that these phases
are only used for computing rewards and not available to a
policy. Please refer to our code for further details.1

F. Demonstration Collection and Generation

Our environment provides multiple ways to collect demon-
strations. Human teleoperation can be used to collect demon-
strations with the end-effector space control using keyboard,
3D space mouse, and HTC Vive VR controllers.

Scripted policies are provided to generate demonstra-
tions for the benchmark furniture models with the Sawyer
robot to assist in evaluating IL algorithms. The hard-coded

1https://github.com/clvrai/furniture
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Fig. 6: Examples of diverse visual properties. The first row
shows different scenes. The second row shows different
lighting configurations, such as soft light, ambient light, and
low-visibility. The final row shows variations in furniture
textures, such as wood, aluminum, and glass.

policies operate by iterating through the predefined set of
phases described in Section III-E and manually annotated
way-points. Each phase consists of either minimizing the
Euclidean distance between relevant points or maximizing
cosine similarity between relevant directional vectors. The
corresponding actions can be computed using positional or
rotational differences, and then performed using the end-
effector space control.

G. Domain Randomization

To promote generalization of the learned skills, the envi-
ronment should provide enough variability in furniture com-
positions, visual appearances, object shapes, and physical
properties. Our environment provides variability in furniture
compositions and object shapes by containing a diverse set of
furniture including chairs, tables, cabinets, bookcases, desks,
shelves, and TV units (see Fig. 3). For a given furniture, the
environment can randomly initialize the pose of each furni-
ture part in the scene to increase the diversity of the initial
states. Additionally, the environment can randomize physical
properties, such as gravity, scale, density, and friction, to add
more variation in the task. The environment also supports
diverse visual properties, such as lighting, backgrounds, and
textures, as illustrated in Fig. 6.

H. Assembly Difficulty by Furniture

The difficulty of a furniture model largely depends on
the shape of the furniture pieces. For example, toy table
is more difficult to grasp due to its cylindrical legs while
rectangular legs of bench bjursta are easier to grasp.
Chairs are generally more difficult to assemble due to their
irregular shapes (e.g., chair seat and chair back). Bookcases
are generally more difficult than chairs due to the wide and
thin pieces, which are difficult to grasp. We rank the furniture
models by assembly difficulty with respect to the number and
shape of the furniture parts.

IV. EXPERIMENTS

To benchmark reinforcement learning (RL) and imita-
tion learning (IL) methods on complex long-horizon ma-
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nipulation tasks, we selected 8 furniture models as a
benchmark and annotated way-points for the dense re-
ward and demonstration generation. The first four bench-
mark furniture models require peg-insertion-like attach-
ment: three blocks, toy table, table dockstra,
and table bjorkudden, where a peg-like part must be
precisely inserted into a recessed receptacle of another part.
The remaining four furniture models (bench bjursta,
chair agne, chair ingolf, and table lack) do not
have recessed receptacles, which enables the parts to snap
together like magnets.

The benchmark is conducted with the Sawyer robotic
arm and joint velocity control, and the furniture models
are sampled mostly from tables and chairs since other
furniture models (e.g., bookcases and cabinets) often consist
of multiple thin boards, which require two grippers to grasp.

With the goal of providing a challenging benchmark to
compare performance in learning long-horizon manipulation
tasks, we design an evaluation protocol for RL and IL
methods in Section IV-A. Then, we evaluate RL (Section IV-
B) and IL (Section IV-C) methods on the 8 benchmark
furniture models.

A. Evaluation Protocol

Evaluation metric: The most basic metric for IL and
RL algorithms is the successful assembly of a furniture.
However, to provide more fine-grained progress measure than
a simple success and failure signal, we record the number
of successful phase completions in an episode (as defined in
Section III-E). The trained models are evaluated on the hold-
out episodes (first 50 episodes with the hold-out random seed
0). Following this evaluation metric, we benchmark RL and
IL algorithms and report average episodic phase completions
for each benchmark furniture over 3 different training seeds.

Experimental setup: For both RL and IL benchmarks, we
use joint velocity control. During demonstration collection,
training, and testing, each furniture part is initialized with the
randomness of [−2 cm, 2 cm] and [−3°, 3°] in (x, y)-plane.
We sequentially initialize furniture parts to avoid collisions
between parts. After all furniture parts are initialized, the
robot is initialized to a predetermined initial position with
added random noise. We set the episode length 200 per
attachment, e.g., 600 for 4 parts. Two parts are attachable
if the corresponding connectors are within 2 cm and their
forward and up vector cosine similarities are larger than 0.99.

Reinforcement learning: For RL benchmark, each algo-
rithm is trained with the shaped dense reward described in
Section III-E. To compare learning performance (i.e., sample
efficiency), we compare the learning curves of evaluation
results every 10K environment steps up to 2M for off-policy
methods and 20M for on-policy methods. The SAC off-
policy update is more expensive in terms of wall-clock time
– SAC took 24 hours to reach 2M steps while PPO could
reach 50M steps in 24 hours.

Imitation learning: For IL benchmark, we collect 100
demonstrations for each of 8 benchmark furniture models

Furniture model PPO SAC GAIL GAIL+PPO BC

three blocks 4.96 3.88 1.06 4.89 1.00
toy table 3.34 3.40 1.16 5.88 1.00

table bjorkudden 5.66 3.66 1.01 5.54 1.00
table dockstra 5.24 3.61 1.01 6.21 1.00

bench bjursta 3.66 3.23 1.01 3.33 1.00
chair agne 6.26 3.60 1.06 6.38 1.02
chair ingolf 4.91 7.54 1.19 7.33 1.00
table lack 6.66 4.10 1.00 5.88 1.00

TABLE I: Average number of phase completions of RL and
IL algorithms. SAC, PPO, and GAIL+PPO learn to pick an
object (corresponds to 4 phase completions) and succeed
on attaching two parts in chair ingolf (corresponds
to 8 phase completions) while BC and GAIL rarely pass
reach phase. The first four models require peg-insertion style
attachments, which are more difficult to accomplish than the
magnet style attachment of the remaining four.

with a hard-coded assembly policy described in Section III-
F. Each demonstration is around 200-1500 steps long due to
the long-horizon nature of the task.

B. Reinforcement Learning Benchmark

We evaluate two state-of-the-art model-free RL algo-
rithms, Soft-Actor Critic (SAC [35]) and Proximal Policy
Optimization (PPO [36]), on the benchmark furniture models
with the dense reward function. The number of completed
phases is plotted over training environment steps in Fig. 7.
Completing four phases means the agent has grasped the
target part and accomplishing eight phases denotes the suc-
cessful assembly of one pair of parts. Note that the y-axis
can go up to 8×#parts, not 8.

Both SAC and PPO learn to pick the first furniture part
in all tasks. In many furniture models, SAC struggles at
completing the lift phase since the agent must firmly hold
the gripped part and avoid collision while lifting. PPO suc-
cessfully attaches the first pair of parts in three blocks,
table bjorkudden, and chair ingolf, in which the
two parts to be attached are initialized close to each other.
However, initializing the arm pose for the next step is
challenging since the agent pushes the gripped part away
while reconfigure the arm pose.

SAC is more sample efficient than PPO, with it reaching
comparable performance levels millions of steps earlier than
PPO. But in most cases, PPO learns to complete more phases
with extensive exploration with diverse rollouts collected
from 16 parallel workers, at the cost of more samples. This
implies that learning to assemble even one pair of parts poses
a challenging exploration problem.

While SAC and PPO can attach the first pair of parts in
some furniture models, no policy is able to advance to the
next pair of parts to attach. The best run is able to assemble
the first pair of parts and pick the next part to be assembled.
This highlights the difficulty of the long-horizon nature in
furniture assembly, and shows ample room to improve RL
algorithms for complex long-horizon manipulation tasks with
our environment.
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Fig. 7: Training curves of RL and IL algorithms on the benchmark furniture models. Successful grasping corresponds with
completion of four phases, and successful assembly of one pair of parts corresponds with completion of eight phases. All
algorithms were trained for about 24 hours. The dashed SAC line shows its final performance after 2M steps.

C. Imitation Learning Benchmark

For the IL benchmark, we evaluate Behavioral Cloning
(BC [37]) and Generative Adversarial Imitation Learn-
ing (GAIL [38]) with joint velocity control. In addition,
we also evaluate the demonstration-guided RL approach,
GAIL+PPO [39], which learns from the weighted sum of
GAIL and task rewards.

The quantitative results in Fig. 7 show that BC and GAIL
fail to accomplish the phase of reaching to an object as the
policy suffers from compounding error. On the other hand,
GAIL+PPO successfully learns to pick an object and attaches
the object in three blocks and chair ingolf. This
result demonstrates the importance of having access to the
shaped reward function to learn the assembly behavior.

We additionally compare with BC policies on end-effector
space control, which is more robust to action errors than joint
velocity control. The end-effector BC policies demonstrate
some successful picking behaviors, while the joint velocity
control BC policies failed completely. This suggests that BC
on joint velocity control is more challenging, and therefore
it is prone to failure and requires more demonstration data.
Please refer to our website for further results and analysis.

D. Implementation Details

For all methods, we use 3-layer MLP with 256 hidden
units for policy, value, and discriminator networks. The
policy and value networks use ReLU nonlinearities while the
discriminator networks use the tanh activation function. The
output of the policy is squashed into [−1, 1] using tanh. The
discount factor is 0.99. We use the Adam optimizer [40] with
momentum (0.9, 0.999). PPO is trained with the entropy
coefficient 4e−3, and rollout of 8192 transitions collected

from 16 parallel workers. We normalize observations using
the moving average and standard deviation. SAC first collects
1000 transitions to fill the replay buffer and the policy and
critic networks are updated with the learning rate 3e−4. BC
is trained with batch size 128 for 500 epochs with learning
rate 3e−4. GAIL is trained using PPO without changing
any hyperparameters. For reward, we use the vanilla GAIL
reward rGAIL = − log(1 − D(s, a)). GAIL+PPO trains a
policy using a combined reward r = 0.8 · rGAIL +0.2 · rENV.

V. CONCLUSION

We propose the IKEA Furniture Assembly Environment
as a novel benchmark for testing complex long-horizon
manipulation tasks. Furniture assembly is a challenging task
requiring 3D perception, high-level planning, and sophisti-
cated low-level control. Our experimental results show that
current RL and IL methods cannot solve the task due to
its long horizon and complex manipulation. Therefore, it is
well suited as a benchmark for robot learning algorithms
aiming to tackle complex long-horizon manipulation tasks.
An important future direction is to enable sim-to-real transfer
by improving realistic screwing interaction, accurate 3D
modeling, and robot calibration. Moreover, supporting multi-
arm or multi-robot collaboration can be another future work
to overcome insufficient payloads of each robot. Finally,
benchmarking visuomotor control and multi-task learning are
the natural followups for the proposed environment.
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